Thursday, January 12, 2012

The Year in Materials

Tiny crystals called quantum dots emit intense, sharply defined colors. Now researchers have made LED displays that use quantum dots. Five years ago, QD Vision demonstrated its first, rudimentary one-color displays, using the nanoscale crystals. This year it demonstrated a full-color display capable of showing video. The company says it could be another five years before the technology appears in commercial displays. Samsung might get there first—it's also developing quantum-dot displays, and demonstrated a full-color one in February.

Quantum-dot displays could use far less energy than LCDs. Another ingenious way to reduce energy use is make displays that emit no light at all, but instead reflect ambient light, an approach being taken by Qualcomm with its full-color Mirasol displays, which use only a tenth of the energy of an LCD. The technology has started to appear in tablet computers in South Korea.

No display looks good after it's covered with fingerprints. A new coating based on soot from a candle flame could provide a cheap oil-repelling layer that could eliminate smudges.

Novel nanostructured materials could greatly enhance the power output of solar panels and make them cheaper by capturing light that would have otherwise been reflected. They could also achieve these goals by converting near infrared light into colors that conventional silicon solar cells can absorb. Another material could render stealth aircraft invisible at night—and invisible to radar night and day.

Metamaterials offer another approach to invisibility: instead of absorbing light, metamaterials bend it around an object. Until this year, researchers have only been able to make metamaterials on a small scale—less than a millimeter across. Now they've made them big enough to be practical. They don't work yet for all wavelengths of light, but they could render objects invisible to night vision equipment.


Stanford researchers built a battery electrode that can be recharged 40,000 times—compared to the 1,000 charges you'd get with a typical laptop battery. Since the electrode lasts so long, and is made of abundant materials, it could provide an inexpensive way to store power from wind turbines and solar panels.

Other researchers have developed inexpensive materials that can store 10 times as much energy as conventional graphite electrodes in lithium-ion batteries. Paired with an equally high-capacity opposite electrode, these could transform portable electronics and electric vehicles. One technology in particular, from Lawrence Berkeley National Laboratory, seems promising because it uses a conductive polymer that can be incorporated into existing manufacturing lines, instead of requiring the expensive new technology for making nanostructures required by others.

New tools could speed the next materials breakthroughs. A modeling program developed at Harvard has led to one of the best organic semiconductors ever made. And a robotic system for making thousands of battery cells with unique electrode chemistries has discovered materials that could boost lithium-ion battery storage capacity by 25 percent.

source: technologyreview.com


Growing Heart Cells Just for You

Peering through a microscope in Madison, Wisconsin, I watched my heart cells beat in a petri dish. Looking like glowing red shrimp without tails, they pulsated and moved very slowly toward one another. Left for several hours, I was told, these cardiomyocytes would coalesce into blobs trying to form a heart. Flanking me were scientists who had conducted experiments that they hoped would reveal whether my heart cells are healthy, whether they're unusually sensitive to drugs, and whether they get overly stressed when I'm bounding up a flight of stairs.

It was snowing outside the office-park windows of Cellular Dynamics International (CDI), where I was observing an intimate demonstration of how stem-cell technologies may one day combine with personal genomics and personal medicine. I was the first journalist to undergo experiments designed to see if the four-year-old process that creates induced pluripotent stem (iPS) cells can yield insight into the functioning and fate of a healthy individual's heart cells. Similar tests could be run on lab-grown brain and liver cells, or eventually on any of the more than 200 cell types found in humans. "This is the next step in personalized medicine: being able to test drugs and other factors on different cell types," said Chris Parker, CDI's chief commercial officer, looking over my shoulder.

CDI scientists created the little piece of my heart by taking cells from my blood and reprogramming them so that they reverted to a pluripotent state, which means they are able to grow into any cell type in the body. The science that makes this possible comes from the lab of CDI cofounder and stem-cell pioneer James ­Thomson of the University of Wisconsin, the leader of one of two teams that discovered the iPS-cell process in 2007. (The other effort was led by Shinya Yamanaka of Kyoto University.) The results are similar to the special cells that appear in embryos a few days after fertilization.

Since late 2008, the company has been manufacturing cardiomyocytes and mailing the frozen cells on dry ice to academic scientists to study how these cells work, and to researchers in the pharmaceutical industry to use in early tests of drug candidates. One important reason to use the cells is that they could reveal whether drugs are toxic to the heart, information that other types of testing can miss. "Several drugs have made it to the market that have cardiotoxic profiles, and that's unacceptable," Parker says. He says that the cardiomyocytes derived from iPS cells are a huge improvement over the cadaver cells sometimes used to test potential drug compounds. Unlike the cadaver cells, IPS-­generated cells beat realistically and can be supplied in large quantities on demand. What's more, iPS-generated cells can have the same genetic makeup as the patients they came from, which is a huge advantage in tailoring drugs and treatments to individuals. These made-to-order cells are not cheap, however. Cellular Dynamics' CEO, Robert Palay, says they cost about $1,500 for a standard vial of 1.5 million cells.

An especially sensational prospect is that iPS cells could be transplanted into patients so they could regenerate diseased or damaged spines, brains, hearts, or other tissue—a proposition that is particularly enticing because these cells wouldn't be rejected by the host's body. They could also defuse the political controversy around embryonic stem cells, because they may one day make it possible to harvest pluripotent cells without destroying a human embryo.

Transplantation, however, is years away for most tissue types, says Alexander Meissner, a Harvard University stem-cell researcher. "It's not trivial to regenerate brain tissue," he says. "This is going to take longer than people think." Thomson agrees. "Talk about transplantation has been a kind of irrational exuberance," he says. The process of using iPS cells to create new tissue still poses certain dangers: some cell lines, for example, harbor mutations that could lead to cancer, and in some cases cells retain a faint chemical memory of their previous identity as skin or blood cells.

Shining bright: A layer of the author’s cardiac cells looks like a ­chaotic clump under the microscope. Credit: Greg Ruffing

Thomson believes these are temporary setbacks. "We have had bone marrow transplantation for a long time, which is essentially stem cells," he says. "And work is being done right now on using iPS cells to repair macular degeneration. But repairing damage to the nerves in a spine is much more difficult." Others share his cautious optimism. "Virtually everything about iPS cells is overhyped," says Chris Austin, director of the Chemical Genomics Center at the National Institutes of Health. "But for the purpose of testing drug candidates, I think the possibilities are considerable, and we and lots of other people are pursuing this. There are lots of problems. Are iPS cells really normal? How do you get enough pure differentiated cells? But the potential is definitely there."

Sticking to Science
I first visited James Thomson on another snowy, frigid day in Wisconsin in 2008, a few weeks after the publication of his paper announcing iPS cells derived from human cells. A scrappy, no-nonsense man in a casual sweater and beat-up Dockers, he sat in a small office adorned with tropical fish, ferns, and an antique dartboard and discussed his original discovery of human embryonic stem cells in 1998. His work set off a storm of protest: opponents argued that destroying a human embryo to harvest its stem cells is tantamount to murder. President George W. Bush restricted most federal funding for embryonic-stem-cell research in 2001, and critics have continued to vilify Thomson, although he tries to keep a low profile. "I don't talk much about it," he said. "I stick to the science."

The creation of iPS cells in 2007 seemed like an elegant bookend to the 1998 finding, because it offered a new way to produce stem cells that can differentiate into any cell type—one that might actually be better, because the cells would be genetically identical to patients' own. "It was a relief that we might have a solution to this political and ethical situation," Thomson said. The breakthrough, however, was a surprise. "We knew that the iPS process was a possibility," he said, "but when we started out, I was sure it would take 10 years at least." Thomson and a Wisconsin postdoc, Junying Yu, set out to create iPS cells by modifying skin cells with "regulator" genes normally found only in embryos. The method, he said, "surprised everyone by working."

Thomson cofounded CDI in 2007, around the same time that several other stem-cell luminaries became involved in iPS-cell companies. These would-be competitors, however, are primarily focused on creating therapeutics. They use iPS cells to help identify and develop drug candidates and to design processes that might one day lead to transplantation. So far CDI has no serious competitors in the market to sell iPS-generated cells in volume for use in research and drug screening. In part, this is because Thomson and his scientific team have been working longer to overcome difficulties in industrializing the technology. "Making iPS cells that are functional in large quantities is tough," says Harvard's Meissner.

Privately held, the company has not detailed its performance, but its CEO told a local newspaper that CDI gets "multimillions" in revenues from selling its heart cells to about 40 customers, including most large pharmaceutical companies. Next year the company plans to roll out iPS-generated liver, brain, and blood cells.

Coldhearted: Samples of the author’s cells are stored in trays under cryogenic conditions. Credit: Greg Ruffing

"This is a game-changer," says stem-cell biologist Sandra Engle, a senior principal scientist at Pfizer who has used CDI's cells. "Before CDI, these cells were very difficult to obtain, and we would only get tiny amounts. This doesn't work for high-throughput testing for drugs." For Kyle Kolaja, global head of predictive toxicology screens and emerging technologies at Roche, the benefit of the CDI cells is that they behave like "real" cells. "They are already having a major impact on drug safety and development," he says. "They have already changed what we're doing."

Cellular Clues
Although companies like Roche and Pfizer are currently using iPS cells simply to screen potential therapeutics for toxicity and other characteristics, someday iPS-based tests could be performed on individual patients to see whether they are at particular risk for side effects. Euan Ashley, a cardiologist at Stanford University, is trying to use iPS cells to help diagnose and treat a 16-year-old boy with early symptoms of dilated cardiomyopathy, a potentially fatal disease in which the heart swells and weakens. "This is the sort of severe genetic disease that runs through families that we think can benefit from iPS technologies and genomics," says ­Ashley. He has scrutinized the boy's DNA for telltale genetic markers associated with the disease and has tested his brother and parents to see if they carry the markers as well. The Stanford team plans to create iPS cells by reprogramming skin cells taken from the family and then induce them to differentiate into cardiomyocytes bearing the characteristic genetic variations. By studying the biochemistry of these heart cells, the scientists hope to gain clues to how they might respond to various drug candidates.

"We will use the iPS cells to check the differences between this child and others with and without the condition," says Ashley, "and to test what drugs will work best for the boy and other impacted family members." Ashley says one goal is to develop tests to determine how the genetic variations actually affect the cells. "The importance of genetic factors will be reflected in these cells," he says.

Other clinicians and labs are also using iPS cells in experiments intended to shed light on disease. For instance, researchers at the Salk Institute are studying iPS-derived neurons from people with schizophrenia to see how they differ from normal neurons, and they will examine what happens when the cells are exposed to antipsychotic drugs. At the NIH, a group is studying iPS-­generated cells from patients with a fatal genetic disorder known as Niemann-Pick disease type C. Other researchers have proposed using iPS-generated cells to test the effects of toxic chemicals such as mercury and pesticides.

The hope, say researchers, is to create a library of iPS cell lines from people who have specific symptoms or behaviors associated with a particular disease. Roche has started a program with Massachusetts General Hospital in Boston to create cell lines that reflect different types of heart disease; the results could help the company develop drugs. This summer, CDI and the Medical College of Wisconsin announced a $6.3 million grant from the NIH to create iPS-generated heart cells from 250 patients who have left ventricular hypertrophy, a condition that causes high blood pressure and increases the risk for cardiovascular disease.

Scientists are still a long way from using iPS cells routinely to diagnose disease or offer individual prognoses. The NIH's Austin cautions that individual cells tell only part of the story of what happens in the dynamic system that is the human body. "In some cases, you don't have a cell that can give you a real answer about a disease like depression," he says. "What cell type do you use for that?"

Pluripotent pioneer: University of Wisconsin biologist James Thomson cofounded Cellular Dynamics International in 2007 after developing a method of reprogramming ordinary human cells to create induced pluri­potent stem cells, which can give rise to any cell type. Thomson has since helped pioneer the use of iPS cells in drug development. Credit: Greg Ruffing

My Mambo
I launched my own iPS journey in a small Quest Diagnostics clinic on a leafy street in San Francisco. Wrapping a rubber tube around my arm, the phlebotomist stuck in a needle to withdraw several vials of blood that would be shipped on ice to Madison. Once they got to CDI, technicians cracked open my white blood cells and used a bioengineered retrovirus to introduce "master transcription" genes into their DNA. These genes reprogrammed the cells so that when they replicated, the results were pluripotent cells rather than more white blood cells. Their transformation into functioning iPS cells took several months of coaxing, purification, and verification that cost about $15,000, which the company paid on my behalf. Once my pluripotent cell line was humming along, the scientists at CDI tweaked a few cells to make them differentiate into three types of heart cells—which I first saw pulsing in a video clip they e-mailed to me.

In Madison, nearly a year after giving up my blood, I was just a bit anxious as I stared at my beating heart cells. I was about to get a rundown on the experiments CDI had performed to demonstrate what these little bundles of bioengineered cytoplasm and nuclei might say about my health and my sensitivity to various drugs.

Chris Parker and the company's product manager for cardiomyocytes, Blake Anson, took the lead in walking me through a series of assessments that began with tests "to make sure these cells are still you," said Parker. They showed me a slide of the 23 paired chromosomes taken from my original blood sample and compared it to a slide showing the chromosomes taken from the cardiomyocytes. They had also run a simple genetic comparison using 16 DNA markers, a test used by law enforcement that provides a quick, relatively cheap way to assess whether two samples match up. When my manufactured cells passed muster, the scientists moved to step two: seeing if they behaved like real cardiomyocytes.

First they buzzed the cells with electricity to check the range in duration of the action potentials—the electrical impulses that drive cardiac contractions. Then they measured the beats of the cells in the aggregate against a kind of EKG waveform like those that appear as up-and-down pulses on a hospital monitor. My cells appeared normal.

A third test pitted the cells against two drugs. One was epinephrine, which triggers the fight-or-flight response and speeds up a person's pulse. "We can see this here: beat, beat, beat," said Parker, showing me a slide with an EKG line. "Your heart rate increases dramatically, so that means you're okay—you can run from that bear." The scientists then dropped in a "sympathetic agonist," a drug that slows the heart way down. "So your cells can relax after running from that bear," said Parker. When I sent Euan Ashley my test results, he verified my persistent normalcy—and confirmed that the cells in question were what they were supposed to be. "These tests prove that the cells are cardiomyocytes," he said, "which at this early stage in this science is important."

Video

A few weeks later, CDI ran another round of experiments that subjected my cells to drugs with known toxic side effects. First came Hismanal, an antihistamine, and Propulsid, a drug to treat gastrointestinal distress. Both medications were pulled from the market in many countries, including the United States, because they were associated with rare but potentially life-threatening heart arrhythmias. "This propensity is due to the unanticipated and unwanted side effect of both drugs blocking and disrupting the normal activity of a specific ion channel in the heart," said a report e-mailed to me from CDI. "Both drugs had similar effects on David Duncan's iPS-derived cardiomyocytes: a dose-dependent increase in the duration of the action potential ... Prolonged action potential durations are a recognized trigger for cardiac arrhythmia that can result in sudden death."

For a second round of pharmaceutical testing, the scientists exposed my cells to two cancer drugs: Gleevec, used mostly to treat some forms of leukemia, and Sutent, used to treat tumors in the stomach, bowel, and esophagus. Both drugs have side effects that include damage to the heart, though they remain in use because the diseases they treat are so serious. "In vitro tests on David Duncan's iPS-derived cardiomyocytes demonstrated that both drugs had adverse effects," said my report, "and that the Gleevec-mediated effect may have been caused by disrupting mitochondrial function." Again, the reactions of my cells were not atypical, although the researchers told me that if I had cancer, further testing might turn up specific responses that could help a physician decide which medications were best for me.

Ashley told me that iPS-generated heart cells offer great potential as a way to test cancer treatments. "Chemo drugs are really hard on hearts, and on heart cells," he said. "If this technology can help, that will be really important."

CDI has told me that as the science unfolds, it may run tests based on the extensive DNA sequencing I had done for a recent book, Experimental Man. I'd be especially interested in a test that could determine how worried I should be about a genetic risk factor for side effects of cholesterol-lowering statins. According to my genetic profile, I have a substantial risk of myopathy—muscle weakness—if I take certain forms of these drugs. However, this condition is due to a malfunctioning enzyme produced by the liver, not the heart, so finding out depends on whether CDI is willing to create liver cells from my iPS line.

Before I left the CDI lab, I took one more look at my heart cells pounding away in their petri dish in a sort of freakish mambo, and I wondered when such banks of individual cells would become a routine part of medical care. Many obstacles remain before this can happen, including the high cost of making the cells. Yet despite the expense, says Thomson, "there will be people that will want to do this—wealthy early adopters who want to know about a disease or a drug. Or some people might do it because they think having their beating heart cells is cool."

As for me, I'm still amazed that the cardiomyocytes in the dish are part of me—let alone that they might one day be used as stunt doubles for my real cells.

David Ewing Duncan is a San Francisco-based writer. His most recent book is ­Experimental Man: What One Man's Body Reveals about His Future, Your Health, and Our Toxic World.


source: technologyreview.com


Technological Healing

In cardiologist Eric Topol's vision, medicine is on the verge of an overhaul akin to the one that digital technology has brought to everything from how we communicate to how we locate a pizza parlor. Until now, he writes in his upcoming book The Creative Destruction of Medicine: How the Digital Revolution Will Create Better Health Care, the "ossified" and "sclerotic" nature of medicine has left health "largely unaffected, insulated, and almost compartmentalized from [the] digital revolution." But that, he argues, is about to change.

Digital technologies, he foresees, can bring us true prevention (courtesy of those nanosensors that stop an incipient heart attack), individualized care (thanks to DNA analyses that match patients to effective drugs), cost savings (by giving patients only those drugs that help them), and a reduction in medical errors (because of electronic health records, or EHRs). Virtual house calls and remote monitoring could replace most doctor visits and even many hospitalizations. Topol, the director of the Scripps Translational Science Institute, is far from alone: e-health is so widely favored that the 2010 U.S. health-care reform act allocates billions of dollars to electronic health records in the belief that they will improve care.

Anyone who has ever been sick or who is likely to ever get sick—in other words, all of us—would say, Bring it on. There is only one problem: the paucity of evidence that these technologies benefit patients. Topol is not unaware of that. The eminently readable Creative Destruction almost seems to have two authors, one of them a rigorous, hard-nosed physician/researcher who insightfully critiques the tendency to base treatments on what is effective for the average patient. This Topol cites study after study showing that much of what he celebrates may not benefit many individual patients at all. The other author, however, is a kid in the electronics store whose eyes light up at every cool new toy. He seems to dismiss the other Topol as a skunk at a picnic.

Much of the enthusiasm for bringing the information revolution to medicine reflects the assumption that more information means better health care. Actual data offer reasons for caution, if not skepticism. Take telemonitoring, in which today's mobile apps and tomorrow's nanosensors would measure blood pressure, respiration, blood glucose, cholesterol, and other physiological indicators. "Previously, we've been able to assess people's health status when they came in to a doctor's office, but mobile and wireless technology allow us to monitor and track important health indicators throughout the day, and get alerts before something gets too bad," says William Riley, program director at the National Heart, Lung & Blood Institute and chairman of a mobile health interest group at the National Institutes of Health. "Soon there won't be much that we can't monitor remotely."

Certainly, it is worthwhile to monitor blood pressure, glucose, and other indicators; if nothing else, having regular access to such data might help people make better choices about their health. But does turning the flow of data into a deluge lead to better results on a large scale? The evidence is mixed. In a 2010 study of 480 patients, telemonitoring of hypertension led to larger reductions in blood pressure than did standard care. And a 2008 study found that using messaging devices and occasional teleconferencing to monitor patients with chronic conditions such as diabetes and heart disease reduced hospital admissions by 19 percent. But a 2010 study of 1,653 patients hospitalized for heart failure concluded that "telemonitoring did not improve outcomes." Similarly, a recent review of randomized studies of mobile apps for smoking cessation found that they helped in the short term, but that there is insufficient research to determine the long-term benefits. Given the land rush into mobile health technologies, or "m-health," the lack of data on their helpfulness raises concerns. "People are putting out systems and technologies that haven't been studied," says Riley.

These concerns also apply to technologies we don't have yet, like those nanosensors in our blood. For instance, studies have reached conflicting conclusions about whether diabetics benefit from aggressive glucose control—something that could be provided by nanosensors paired with insulin delivery devices. Several studies have found that it can lead to hypoglycemia (dangerously low levels of blood glucose) and does not reduce mortality in severely ill diabetics. And sensors may be no better at detecting incipient cancers or heart attacks. If the ongoing debate about overdiagnosis of breast and prostate cancer has taught us anything, it should be that an abnormality that looks like cancer might not spread or do harm, and therefore should not necessarily be treated. For heart attacks, we need rigorous clinical trials establishing the rate of false positives and false negatives before we start handing out nanosensors like lollipops.

EHRs also seem like a can't-miss advance: corral a patient's history in easily searched electrons, rather than leaving it scattered in piles of paper with illegible scribbles, and you'll reduce medical errors, minimize redundant tests, avoid dangerous drug interactions (the system alerts the prescriber if a new prescription should not be taken with an existing one), and ensure that necessary exams are done (by reminding a physician to, say, test a diabetic's vision).

In practice, however, the track record is mixed. In one widely cited study, scientists led by Jeffrey Linder of Harvard Medical School reported in 2007 that EHRs were not associated with better care in doctor's offices on 14 of 17 quality indicators, including managing common diseases, providing preventive counseling and screening tests, and avoiding potentially inappropriate prescriptions to elderly patients. (Practices that used EHRs did do better at avoiding unnecessary urinalysis tests.) Topol acknowledges that there is no evidence that the use of EHRs reduces diagnostic errors, and he cites several studies that, for instance, found "no consistent association between better quality of care and [EHRs]." Indeed, one disturbing study he describes showed that the rate of patient deaths doubled in the first five months after a hospital computerized its system for ordering drugs.

Financial incentives threaten another piece of Topol's vision. Perhaps the most promising path to personal medicine is pharmacogenomics, or using genetics to identify patients who will—or will not—benefit from a drug. Clearly, the need is huge. Clinical trials have shown that only one or two people out of 100 without prior heart disease benefit from a certain statin, for instance, and one heart attack victim in 100 benefits more from tPA (tissue plasminogen activator, a genetically engineered clot-dissolving drug) than from streptokinase (a cheap, older clot buster). Genetic scans might eventually reveal who those one or two are. Similarly, as Topol notes, only half the patients receiving a $50,000 hepatitis C drug, and half of those taking rheumatoid arthritis drugs that ring up some $14 billion in annual sales, see their health improve on these medications. By preëmptively identifying who's in which half, genomics might keep patients, private insurers, and Medicare from wasting tens of billions of dollars a year.

Yet despite some progress in matching cancer drugs to tumors, pharmacogenomics "has had limited impact on clinical practice," says Joshua Cohen of the Tufts Center for the Study of Drug Development, who led a 2011 study of the field. Several dozen diagnostics are in use to assess whether patients would benefit from a specific drug, he estimates; one of the best-known analyzes breast cancers to see if they are fueled by a mutation in the her2 protein, which means they are treatable with Herceptin. But insurers still doubt the value of most such tests. It's not clear that testing everyone who's about to be prescribed a drug would save money compared with giving it to all those patients and letting the chips fall where they may.

Genotyping is not even routine in clinical trials of experimental cancer drugs. As Tyler Jacks, an MIT cancer researcher, recently told me, companies "run big dumb trials" rather than test drugs specifically on patients whose cancer is driven by the mutation the drug targets. Why? Companies calculate that it is more profitable to test these drugs on many patients, not just those with the mutation in question. That's because although a new drug might help nearly all lung cancer patients with a particular mutation, a research trial might indicate that it helps—just to make up a number—30 percent of lung cancer patients as a whole. Even that less impressive number could be enough for Food and Drug Administration approval to sell the drug to everyone with lung cancer. Limiting the trial to those with the mutation would limit sales to those patients. The risk that the clinical trial will fail is more than balanced by the chance to sell the drug to millions more people.

Such financial considerations are not all that stands in the way of Topol's predictions. He and other enthusiasts need to overcome the lack of evidence that cool gadgets will improve health and save money. But though he acknowledges the "legitimate worry" about adopting technologies before they have been validated, his cheerleading hardly flags. "The ability to digitize any individual's biology, physiology, and anatomy" will "undoubtedly reshape" medicine, he declares, thanks to the "super-convergence of DNA sequencing, mobile smart phones and digital devices, wearable nanosensors, the Internet, [and] cloud computing." Only a fool wouldn't root for such changes, and indeed, that's why Topol wrote the book, he says: to inspire people to demand that medicine enter the 21st century. Yet he may have underestimated how much "destruction" will be required for that goal to be realized.

Sharon Begley, a former science columnist at Newsweek and the Wall Street Journal, is a contributing writer for Newsweek and its website, the Daily Beast.

source: technologyreview.com

Discovery Could Lead to an Exercise Pill

Researchers have discovered a natural hormone that acts like exercise on muscle tissue—burning calories, improving insulin processing, and perhaps boosting strength. The scientists hope it could eventually be used as a treatment for obesity, diabetes, and, potentially, neuromuscular diseases like muscular dystrophy.

In a paper published online today by the journal Nature, the scientists, led by Bruce Spiegelman at the Dana-Farber Cancer Institute in Boston, showed that the hormone occurs naturally in both mice and humans. It pushes cells to transform from white fat—globules that serve as reservoirs for excess calories—into brown fat, which generates heat.

Because the hormone is present in both mice and humans, Spiegelman speculates that it may have served as an evolutionary defense against cold by triggering shivering. He named it irisin, after the Greek messenger goddess Iris, who allowed humans to communicate with the gods in Greek mythology, because exercise appears to "talk" to various tissues in the body via irisin.

Mice given irisin lost a few grams in the first 10 days after treatment, the study shows, and certain genes involved in powering the cell were turned on. Irisin also appeared to reduce the damage done by a high-fat diet, protecting mice against diet-induced obesity and diabetes, according to the paper, whose first author is postdoctoral fellow Pontus Boström.

Advertisement

"We are hopeful, though we have no evidence, that this hormone may embody some of the other benefits of exercise, perhaps in the neuromuscular system," Spiegelman says. If so, it could also be used to treat disorders like muscular dystrophy and muscle wasting.

Researchers still have to figure out how much benefit irisin could provide someone with diabetes or other health problems, says Spiegelman, also a professor of cell biology and medicine at Harvard Medical School. "I'm optimistic," he says. "I just don't want to overpromise and underdeliver."

Harvard Medical School's Dean Jeffrey Flier, an endocrinologist, says he is quite enthusiastic about the new hormone. The study, he says, "opens up a completely new approach to understanding the links between exercise, body weight, and diabetes."

Flier believes irisin offers strong therapeutic potential. "Though much remains to be learned about the action of irisin, and its status in humans with various diseases, this work has the potential to be a game-changer in the field of metabolic disease."

Last month, Spiegelman formed a Boston-based company named Ember Therapeutics to develop his brown-fat research projects, including irisin. The company raised $34 million in series A financing, and is backed by Third Rock Ventures of Boston.

Harvey Lodish, a professor of biology and bioengineering at MIT, and a member of the Whitehead Institute for Biomedical Research, says it may be harder to make irisin into a drug than Spiegelman anticipates. Lodish tried for years to make adiponectin, a hormone he discovered in the mid-1990s, into a similar drug, but never succeeded.

The concentration of both hormones in the blood is already so high that manufacturing enough to make a difference in health is quite challenging, he says. Maybe irisin will be easier to produce, he says, or maybe it could be delivered via gene therapy, in a modified version of the delivery system Spiegelman used in his research—but Lodish is dubious.

However, of Spiegelman's new research, he says, "It's very nice, it's very elegant."

source: technologyreview.com

The Art of 3-D Printing

As part of our special report on manufacturing, we asked Neri Oxman, a professor at the MIT Media Lab and an internationally recognized artist whose work is part of the permanent collection at the Museum of Modern Art in New York, to create a sculpture that would illustrate the future of manufacturing. (See a gallery of images here.)

What she produced, in collaboration with MIT materials science professor Craig Carter, is a powerful demonstration of the possibilities of 3-D printing, using techniques that take advantage of the capabilities of 3-D printers in ways that conventional manufacturing techniques cannot.

3-D printing encompasses a range of technologies—from inkjet heads mounted on gantries that can deposit plastics layer by layer to form intricate models, to more recent laser-based systems that sinter metal powders to make durable parts for airplanes. 3-D printers have mainly been used for prototyping, but they are becoming an option for manufacturing as well, and may eventually even be used to print buildings, Oxman says. But designers and architects haven't yet learned to take advantage of their capabilities.

Oxman, who trained as an architect, says buildings are designed today with an eye toward the components they can be made of—sheets of plywood, panes of glass, steel beams, and concrete columns. As a result, those designs are limited, in much the way Lego bricks constrain the shapes that children can build. There are similar limitations in conventional manufacturing; there are some shapes that simply can't be built with existing molds and machining tools, and designers have had to design with these limits in mind.

Oxman is exploring ways to break with conventional design thinking by looking to patterns and processes found in nature, and using equations that define these processes to generate new designs. The results are often surprising shapes and structures that can be made only with 3-D printers.

To help develop the algorithms needed, Oxman has teamed up with Carter and others. In some cases, the algorithms provide new aesthetics, but they can also have practical applications—such as varying the structure to help bear loads. For one sculpture—a model of a chaise longue reclined chair—the team combined algorithms taken from nature with a map of the pressure a body exerts on a chair. The result depends on where the algorithms determine the chair needs to be soft to provide comfort and where it needs to be stiff to provide support.


source: technologyreview.com

Magnetic Memory Miniaturized to Just 12 Atoms

A memory-storage element made at IBM Research points to future computing systems built atom by atom.

  • Thursday, January 12, 2012
  • By Katherine Bourzac

The smallest magnetic-memory bit ever made—an aggregation of just 12 iron atoms created by researchers at IBM—shows the ultimate limits of future data-storage systems.

The magnetic memory elements don't work in the same way that today's hard drives work, and, in theory, they can be much smaller without becoming unstable. Data-storage arrays made from these atomic bits would be about 100 times denser than anything that can be built today. But the 12 atoms making up each bit must be painstakingly assembled using an expensive and complex microscope, and the bits can hold data for only a few hours and at low temperatures approaching absolute zero, so the miniscule memory elements won't be found in consumer devices anytime soon.

As the semiconductor industry bumps up against the limits of scaling by making memory and computation devices ever smaller, the IBM Almaden research group, led by Andreas Heinrich, is working from the other end, building computing elements atom-by-atom in the lab.

The necessary technology for large-scale manufacturing at the single-atom scale doesn't exist yet. Today, says Heinrich, the question is, "What is it you would want to build on the scale of atoms for data storage and computation, in the distant future?"

As engineers miniaturize conventional devices, they're finding that quantum physics, which never had to be accounted for in the past, makes devices less stable. As conventional magnetic memory bits are miniaturized, for example, each bit's magnetic field begins to affect its neighbors', weakening each bit's ability to hold on to a 1 or a 0.

The IBM researchers found that it was possible to sidestep this problem by using groups of atoms that display a different kind of magnetism. The key, says Heinrich, is the magnetic spin of each individual atom.

In conventional magnets, whether they're found holding up a note on the refrigerator or in a data-storage array, the magnetic spins of the atoms are aligned. It's this alignment that leads to instability when magnetic-memory elements are miniaturized. The IBM researchers made their tiny memory elements by lining up iron atoms whose spins were counter-aligned.

source: technologyreview.com

iPad with a Samsung

You just know it's an iPad, right? (Credit: Josh Lowensohn/CNET) The Apple-Samsung trial has been such a show that it has invaded my he...